
On-Off Sketch: A Fast and Accurate Sketch on Persistence

Yinda Zhang
∗

Peking University

hgdkgszyd@gmail.com

Jinyang Li
∗

Peking University

lijinyang@pku.edu.cn

Yutian Lei
†

Xiangtan University

leiyutianchina@hotmail.com

Tong Yang
∗‡

Peking University

yangtongemail@gmail.com

Zhetao Li
†

Xiangtan University

liztchina@hotmail.com

Gong Zhang
§

Huawei

nicholas.zhang@huawei.com

Bin Cui
∗¶

Peking University

bin.cui@pku.edu.cn

ABSTRACT
Approximate stream processing has attracted much attention re-

cently. Prior art mostly focuses on characteristics like frequency,

cardinality, and quantile. Persistence, as a new characteristic, is

getting increasing attention. Unlike frequency, persistence high-

lights behaviors where an item appears recurrently in many time

windows of a data stream. There are two typical problems with

persistence – persistence estimation and finding persistent items. In

this paper, we propose the On-Off sketch to address both problems.

For persistence estimation, using the characteristic that the persis-

tence of an item is increased periodically, we compress increments

when multiple items are mapped to the same counter, which signif-

icantly reduces the error. Compared with the Count-Min sketch, 1)

in theory, we prove that the error of the On-Off sketch is always

smaller; 2) in experiments, the On-Off sketch achieves around 6.17

times smaller error and 2.2 times higher throughput. For finding

persistent items, we propose a technique to separate persistent and

non-persistent items, further improving the accuracy. We show

that the space complexity of our On-Off sketch is much better than

the state-of-the-art (PIE), and it reduces the error up to 4 orders of

magnitude and achieves 2.84 times higher throughput than prior

algorithms in experiments.
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1 INTRODUCTION
Nowadays, with the increasing speed of data streams, it is more

and more challenging to answer queries accurately on data streams

using a limited amount of memory. Therefore, lots of interests have

been given to approximate stream processing algorithms [1–7],

which can process the data in one pass and give an approximate

answer immediately. Prior algorithms mostly focus on data charac-

teristics such as frequency [8–16], cardinality [17–19], and quantile

[20–22]. Apart from the above characteristics, another important

characteristic – persistence, has received growing attention. Given
an item 𝑒 and a data stream with 𝑇 non-overlapping and contigu-

ous time windows, the persistence of 𝑒 is defined as the number

of time windows where 𝑒 appears. For example, the number of

days a person visits a website in one year is a kind of persistence,

which indicates the person’s preference for the website. Some prior

algorithms [23] require the sizes of time windows to be equal. In

this paper, to make our definition more general, we do not make

any assumptions about the sizes of time windows.

Persistence is often related to different data stream applications,

especially in network quality inspection [24] and anomalies de-

tection. Persistence can be used to detect potentially malicious

behaviors [25] about network security [26–30] or click fraud de-

tection [31]. Frequency, which is used as an indicator by many

detection systems, is more suitable for detecting anomalies behav-

ing as heavy hitters. However, as shown in [25], some threats are

trying to hide by spreading their communications over many time

windows. For example, instead of communicating 2400 times in an

hour, which can be easily detected by finding frequent items, some

threats communicate only once every hour for 100 days, which can-

not be detected by finding frequent items. To detect such threats,

we should use persistence instead of frequency as an indicator.

In this paper, we address two problems with persistence. The

first one is persistence estimation. This problem requires the algo-

rithm to report an approximate estimation of persistence for every

item in the data stream. The second problem is finding persistent
items. Persistent items refer to items whose persistence is larger

than a given threshold. This problem focuses on items with high

persistence.

To the best of our knowledge, no prior work is designed for persis-

tence estimation. Though there are many algorithms for frequency
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estimation [9–11], they cannot be directly used for persistence es-

timation. Because of the different definitions of persistence and

frequency, for a frequent item, its frequency could be much larger

than its persistence. For example, for an item 𝑒𝑖 appearing 100 times

in only 1 time window, its frequency is 100, but its persistence is 1.

For finding persistent items, some prior algorithms [23] cannot

work when the sizes of time windows are unequal. Two well-known

algorithms, Small-Space [32] and PIE [33], can work without any

assumptions about the sizes of time windows. Small-Space selects

items by sampling and stores the sampled information in a hash

table. The key advantage of Small-Space is that it can effectively re-

duce memory usage by sampling. However, it has three limitations.

1) It needs large memory usage because the hash table is a typical

data structure that uses a large memory, and it has to keep all items

sampled regardless of their persistence. 2) Its sampling rate needs

to be low to keep small memory usage, which magnifies its error. 3)

Hash collisions decrease its throughput. PIE finds persistent items

by encoding and decoding item IDs. It reduces memory usage by

storing the Raptor code [34] instead of ID. The key advantage of PIE

is that the larger persistence an item has, the more Raptor codes PIE

stores, and the larger probability the item is decoded successfully.

However, it has the following two limitations. 1) Though it can

reduce memory usage by encoding, it needs to store the Raptor code

of every distinct item in every time window. Because most items in

data streams are non-persistent items, PIE wastes much space to

record the information of non-persistent items. 2) The information

stored in PIE needs to be encoded through matrix multiplication,

which is slow compared to the fast speed of data streams.

In this paper, we propose a new algorithm, On-Off sketch, to

address problems of persistence estimation and finding persistent

items. Our key idea is: utilizing the characteristic that the persis-

tence of an item is increased periodically, we compress increments

when multiple items are mapped to the same counter, which signif-

icantly reduces the error.

To better understand our key idea, we first show a strawman so-

lution: using prior algorithms for frequency estimation (e.g., Count-
Min sketch [9]) to estimate persistence, with a Bloom filter [35] to

remove duplicates. However, for this solution, in addition to the

error incurred by the Bloom filter, there are still errors caused by

hash collisions in the same time window. Because the Count-Min

sketch uses hash functions to map items into a counter for each ar-

ray, there could be many distinct items mapped to the same counter

due to the space limitation. For example, if there are 5 distinct items

mapped into the same counter and all occurred in the time window

𝑊𝑐𝑢𝑟 , the mapped counter is increased by 5, but the true persistence

of each item is only increased by 1 in a time window. As a result,

the persistence is highly overestimated because of hash collisions.

From the above example, we can find that regardless of the

number of items mapped to the counter in a time window, we

should only increment the counter by one due to the characteristic

of the persistence. Therefore, for persistence estimation, instead

of using the Bloom filter, we add a state field for each counter to

show whether this counter has been incremented in the current

time window. At the beginning of each time window, the state of

every counter in the sketch is set to On. Every time an item is

mapped to a counter, only if the state of the counter is On, we can
increment the counter, and then turn the state to Off . In this way,

the On-Off sketch guarantees every counter is incremented at most

once in a time window, eliminating the error from repeated items

and significantly reducing the error from hash collisions. Further,

the On-Off sketch does not need to query the Bloom filter to do

additional memory accesses, which also improves its throughput.

For finding persistent items, based on the solution to persistence

estimation, our key idea is to separate persistent and non-persistent

items. We store the information on persistent items and protect

them from hash collisions with other items. In this way, we further

improve the accuracy of persistent items. In addition, the data struc-

ture used by our On-Off sketch is more time- and memory-efficient

than prior algorithms. To achieve time-efficiency, the On-Off sketch

guarantees that every item only needs to access one counter and

one bucket. We also accelerate the On-Off sketch by enabling it

to make use of the data parallelism of SIMD [36] instructions. To

achieve memory-efficiency, the On-Off sketch does not use pointers

and spends most space storing persistent items, which are often a

small part of items in data streams.

Theoretical Result Advancement: For persistence estimation,

our theoretical proofs show that the error of our On-Off sketch is

always smaller than that of the Count-Min sketch with the same

parameters. For finding persistent items, our theoretical proofs

show that the space complexity of our On-Off sketch is much better

than the state-of-the-art (PIE).

Experimental Result Advancement: For persistence estimation,

our experimental results show that the On-Off sketch achieves

around 6.17 times smaller error and 2.2 times higher throughput.

For finding persistent items, our experimental results show that the

On-Off sketch reduces the error up to 4 orders of magnitude and

achieves 2.84 times higher throughput than prior algorithms. The

source codes of the On-Off sketch and all other related algorithms

are available at GitHub [37].

2 RELATEDWORK
To the best of our knowledge, no prior work is designed for persis-

tence estimation. Though there are prior works called persistent

sketches [38] and persistent bloom filters [39], the meaning of per-

sistence in these works is different. Therefore, we divide existing

works into two categories: solutions for frequency estimation (Sec-

tion 2.1), and solutions for finding persistent items (Section 2.2).

2.1 Frequency Estimation
Many solutions for frequency estimation use sketches. Typical

works include Count-Min (CM) sketch [9] and Count sketch [11].

CM sketch: The CM sketch consists of 𝑑 arrays, each consisting of

𝑙 counters. The 𝑑 arrays are associated with 𝑑 pairwise independent

hash functions. There are also two operations for this data structure:

insertion and query. To insert item 𝑒𝑖 , the CM sketch first calculates

𝑑 hash functions and maps 𝑒𝑖 to 𝑑 counters, one counter in each

array. We call these counters the𝑑 mapped counters for convenience.
Then, the CM sketch increments each counter by 1. To query the

frequency of item 𝑒𝑖 , CM sketch maps it to 𝑑 counters with the

same hash functions and reports the minimum mapped counter, the
minimum one of 𝑑 counters, as the estimated frequency.

These solutions cannot be directly used on persistence estimation

because they cannot avoid errors caused by repeated occurrences of



an item within a time window. One way to deal with this problem

is to use a Bloom filter [35]. In each time window, we build a new

Bloom filter to remove duplicates and guarantee that every distinct

item is inserted to the sketch at most once. However, there are still

two limitations to this solution: 1) The Bloom filter brings additional

error. 2) Errors caused by hash collisions in the same time window

still exist.

2.2 Finding Persistent Items
Prior works on persistence often focus on finding persistent items.

These works can report persistent items, but cannot estimate the

persistence of all items. The two recent works which can work

without any requirements for the sizes of time windows are Small-

Space [32] and PIE [33].

Small-Space: The key idea of Small-Space is “sample and count”.

It maintains a hash table to track occurrences of some items. When

an item arrives, if it is already tracked, Small-Space modifies the es-

timated persistence according to the time window field. Otherwise,

Small-Space samples it according to its ID and the current time

window. Sampling approaches used by Small-Space can effectively

reduce time and space overhead. The shortcoming of Small-Space is

the lack of space efficiency. The root reason is that it must keep all

items sampled. In practice, most items are non-persistent items, and

many non-persistent items will be sampled into Small-Space. As a

result, it wastes much space to store many non-persistent items.

PIE: PIE proposes the Space-Time Bloom filter (STBF) and uses

Raptor codes[34] to find persistent items. In each time window,

PIE creates one STBF, which consists of several cells. For an item,

PIE maps it to multiple cells in the STBF by hash functions, and in

each of these mapped cells, PIE inserts the item by computing its

fingerprint and Raptor code. To find persistent items, PIE searches

all cells in all STBFs and decodes an ID if enough raptor codes are

found. Items with larger persistence occur in more STBFs and have

a larger probability of being decoded successfully. However, as the

number of time windows increases, the memory needed by PIE is

quite large. If there is not enough memory in STBFs, hash collisions

may frequently occur, resulting in most cells being useless and the

error increasing.

There are also some other algorithms for finding persistent items.

In [25, 30], they use a hash table or a bitmap to record every item

in the data stream to find persistent items. However, as pointed out

by [32], these methods are memory consuming and impractical due

to the large volume of data. Besides, LTC [23], which is proposed

to find items that are both frequent and persistent, can also be used

to find persistent items by adjusting the weight of frequency and

persistence. However, due to the CLOCK technique it uses, LTC

can only work when the sizes of time windows are equal, limiting

its flexibility.

3 ALGORITHM DESIGN
In this section, before presenting details of our On-Off sketch, we

first show a strawman solution and discuss its limitations (Section

3.1). Then we show the data structure and operations of our On-Off

sketch for persistence estimation (Section 3.2) and finding persistent

items (Section 3.3). Finally, we show the optimization of our On-Off

sketch on finding persistent items (Section 3.4). For convenience,

we list symbols frequently used in this paper and their meanings

in Table 1.

Table 1: Symbols frequently used in this paper.

Notation Meaning
𝑆 a data stream

𝑇 the number of time windows in 𝑆

𝑁 the number of distinct items in 𝑆

𝑒𝑖 the 𝑖𝑡ℎ distinct item in 𝑆

𝑝𝑖 the persistence of item 𝑒𝑖

𝑝𝑖 the estimated persistence of item 𝑒𝑖

𝑙 the number of counters/buckets

𝑑 the number of arrays

𝑤 the number of key-value pairs in a bucket

ℎ𝑖 (.) the 𝑖𝑡ℎ hash function from item to {1, . . . , 𝑙}
𝐶𝑖 [ 𝑗] the 𝑗𝑡ℎ counter in the 𝑖𝑡ℎ array

𝐵 [𝑖] the 𝑖𝑡ℎ bucket

𝐵 [𝑖]𝑚𝑖𝑛
the smallest counter in 𝐵 [𝑖]

3.1 A Strawman Solution
Recall that the persistence of item 𝑒 is the number of time windows

where 𝑒 appears. A strawman solution for persistence estimation is

to use an existing sketch for frequency estimation to estimate per-

sistence, and use an additional data structure to remove duplicates.

We use the strawman solution proposed by PIE [33]: a Count-Min

(CM) sketch [9] on frequency estimation and a Bloom filter [35]

on duplicates removing. We have presented the details of the CM

sketch in Section 2.1, and we only show the details of the Bloom

filter here.

Bloom filter: A Bloom filter is used for the set membership query.

It is an array of𝑚 bits, all of which are initialized to 0. The array is

associated with 𝑧 independent hash functions, each of which maps

the item uniformly into one bit of the array. To insert an item 𝑒 , the

Bloom filter uses 𝑧 hash functions to map 𝑒 into 𝑧 bits in the array

and sets all these 𝑧 bits to 1. To query an item 𝑒 , the Bloom filter

maps 𝑒 to 𝑧 bits and reports true only if all the 𝑧 bits are 1.
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Figure 1: Insertion of the strawman solution.

Here we show how the strawman solution works, shown in

Figure 1. To insert item 𝑒𝑖 , we first query the Bloom filter. If the

Bloom filter reports true, indicating 𝑒𝑖 has occurred in this time

window, we do nothing. Otherwise, we insert 𝑒𝑖 into both the Bloom



filter and CM sketch. At the end of each time window, we clear

the Bloom filter by setting all bits to 0. To estimate persistence, we

query CM sketch and report the minimum mapped counter as the

estimated persistence.

)=
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)4 )>
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Figure 2: Limitations of the strawman solution.

Limitations: There are two main limitations to this strawman

solution. First, the Bloom filter will incur additional errors. If an

incoming item has not appeared, the Bloom filter may also report

true, which is called false positive. Second, hash collisions in the CM

sketch make the persistence significantly overestimated. As shown

in Figure 2, if three different items are mapped to the same counter

at the same time window, the mapped counter will increase by 3.

However, we should note that the persistence of each item only

increases by one at this time window. To address these limitations,

we aim to avoid using the Bloom filter and guarantee that a counter

in the sketch is incremented at most once in each time window.

3.2 Persistence Estimation
To address the limitations of the strawman solution, our On-Off

sketch adds a state field for each counter to indicate whether it

has been incremented or not in the current time window. Next, we

illustrate the On-Off sketch for persistence estimation in detail.

Data Structure (Figure 3): The On-Off sketch consists of 𝑑 ar-

rays, each of which consists of 𝑙 counters. Let 𝐶𝑖 [ 𝑗] be the 𝑗𝑡ℎ

counter in the 𝑖𝑡ℎ array. Each counter has a state field with two

states: On and Off. Initially, all state fields are On, and all coun-

ters are zero. The 𝑑 arrays are associated with 𝑑 pairwise inde-

pendent hash functions ℎ1 (.) ...ℎ𝑑 (.), respectively. For 1 ⩽ 𝑖 ⩽ 𝑑 ,

ℎ𝑖 : {1, . . . , 𝑁 } −→ {1, . . . , 𝑙}.
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Figure 3: Data Structure of persistence estimation.

Insertion: To insert item 𝑒𝑖 , the On-Off sketch calculates 𝑑 hash

functions and maps 𝑒𝑖 to 𝑑 counters𝐶 𝑗 [ℎ 𝑗 (𝑒𝑖 )], one counter in each
array. For each of these 𝑑 mapped counters, there are two cases:

Case 1: The counter’s state is On, indicating that this counter has
not been accessed in the current time window yet. The On-Off

sketch increments the counter by one and turns the state to Off.
Case 2: The counter’s state is Off, indicating that this counter has

been accessed in the current time window. The On-Off sketch does

not change the counter.

Examples of Insertion (Figure 4): Let 𝑑 = 3. To insert item 𝑒3,

the On-Off sketch calculates 3 hash functions and maps 𝑒3 to one

counter in each array. In the mapped counter of the first array, the

state field is On, so this is Case 1. In this case, the On-Off sketch

will increment the counter by 1, i.e., from 5 to 6, and turns the state

to Off. In the mapped counter of the second array, the state field is

On, so the On-Off sketch increments the counter by 1, i.e., from 3

to 4, and turns the state to Off. In the mapped counter of the third

array, the state field is Off, which is Case 2. In this case, the On-Off

sketch does nothing.
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Figure 4: Insertion examples of persistence estimation.

Query: To query the persistence of item 𝑒𝑖 , the On-Off sketch first

calculates the 𝑑 hash functions and gets 𝑑 mapped counters. Then

it reports the minimum mapped counter among these 𝑑 counters as

𝑒𝑖 ’s persistence. In other words, let 𝑝𝑖 be the estimated persistence,

and we have 𝑝𝑖 =𝑚𝑖𝑛
1⩽ 𝑗⩽𝑑 (𝐶 𝑗 [ℎ 𝑗 (𝑒𝑖 )]).

Periodical Emptying:At the end of each time window, the On-Off

sketch should set all state fields to On.
Analysis: By adding a state field for each counter, we can guaran-

tee every counter will be incremented at most once in each time

window, regardless of the number of itemsmapped to it. Our On-Off

sketch reduces the overestimation error by eliminating the error

incurred by repeated occurrences of the same item in one time

window and significantly reducing the error from hash collisions.

In addition, the On-Off sketch only has one-sided errors, i.e., it only
overestimates the persistence, since the state field does not incur

false positives like the Bloom filter.

3.3 Finding Persistent Items
On persistence estimation, we can find that the On-Off sketch does

not store the IDs of items, indicating the data structure of the On-

Off sketch in Section 3.2 cannot be directly used to find persistent

items. Therefore, we change the data structure of our On-Off sketch

to find persistent items. The key technique of our On-Off sketch in

finding persistent items is that we distinguish items by persistence

and only store the IDs of persistent items.

Data Structure (Figure 5): There are two parts in the On-Off

sketch for finding persistent items. The first part is an array similar

to the data structure shown in Section 3.2, which is used to record

the estimated persistence of non-persistent items. Specifically, it

has 𝑙 counters, where the 𝑖𝑡ℎ counter is denoted as 𝐶1 [𝑖]. This
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Figure 5: Data Structure of finding persistent items.

array is associated with a hash function ℎ1 (.), mapping each item

into one counter in the array. The second part is used to record

persistent items. It consists of an array of 𝑙 buckets, where the 𝑖𝑡ℎ

bucket is denoted as 𝐵 [𝑖]. Each bucket corresponds to a counter,

i.e., 𝐵 [𝑖] corresponds to 𝐶1 [𝑖]. There are 𝑤 key-value (KV) pairs

in each bucket, where the key is the ID of the item, and the value

is the corresponding counter. We use 𝐵 [𝑖] [𝑒 𝑗 ] to represent the

corresponding counter of 𝑒 𝑗 if 𝑒 𝑗 is stored in 𝐵 [𝑖]. There is also a
state field for each counter with two states: On and Off. Initially, all
state fields are On, and all counters are zero.

Increment of counters: No matter it is the counter in the first

or second part, we increment the counters in the same way as

shown in Section 3.2: if the counter’s state is On, the On-Off sketch

increments the counter by one and turns the state to Off. Otherwise,
it does nothing.

Insertion of the On-Off sketch: To insert 𝑒𝑖 , the On-Off sketch

first checks whether 𝑒𝑖 has been recorded in bucket 𝐵 [ℎ1 (𝑒𝑖 )]. If 𝑒𝑖
has been recorded in 𝐵 [ℎ1 (𝑒𝑖 )], the On-Off sketch increments the

corresponding counter in 𝐵 [ℎ1 (𝑒𝑖 )] [𝑒𝑖 ]. Otherwise, it increments

counter 𝐶1 [ℎ1 (𝑒𝑖 )]. After insertion, the On-Off sketch compares

𝐶1 [ℎ1 (𝑒𝑖 )] with the smallest counter in 𝐵 [ℎ1 (𝑒𝑖 )] (𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛
)

in order to determine whether 𝑒𝑖 is persistent enough to store in the

bucket 𝐵 [ℎ1 (𝑒𝑖 )]. If𝐶1 [ℎ1 (𝑒𝑖 )] > 𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛
, indicating that the

estimated persistence of 𝑒𝑖 is larger, 𝑒𝑖 should be stored in bucket

𝐵 [ℎ1 (𝑒𝑖 )], while 𝐶1 [ℎ1 (𝑒𝑖 )] should be replaced with the value of

the smallest counter in 𝐵 [ℎ1 (𝑒𝑖 )]. Therefore, the On-Off sketch sets

the key of 𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛
to 𝑒𝑖 , swaps 𝐶1 [ℎ1 (𝑒𝑖 )] and 𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛

,

and swaps their states. If 𝐶1 [ℎ1 (𝑒𝑖 )] ⩽ 𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛
, indicating 𝑒𝑖

is not persistent enough, the On-Off sketch does nothing.

Examples of Insertion (Figure 6): Let 𝑤 = 2. To insert item 𝑒3,

the On-Off sketch first calculates one hash function and maps 𝑒3 to

a counter and the corresponding bucket. Because 𝑒3 is not stored in

the bucket, the On-Off sketch inserts 𝑒3 into the counter. The state

field of the counter is Off, so nothing is changed. Because 3 is not

larger than the smallest counter (3) in the bucket, the On-Off sketch

does not swap. After that, to insert item 𝑒1, we find 𝑒1 is stored in

the bucket, so the On-Off sketch inserts 𝑒1 into the corresponding

counter, and the counter is updated to (Off, 9). In another example,

we insert item 𝑒5. We find that 𝑒5 is not stored in the bucket, so

the On-Off sketch inserts 𝑒5 into the counter, and the counter is

updated to (Off, 3). Because 3 is larger than the smallest counter

(2) in the bucket, the On-Off sketch sets the key to 𝑒5, and swaps

(Off, 3) and (On, 2). After that, to insert item 𝑒2, because 𝑒2 is not

stored in the bucket, the On-Off sketch inserts 𝑒2 into the counter,

and the counter is updated to (Off, 3). Because 3 is not larger than
the smallest counter (3), the On-Off sketch does not swap.

Query: To report the persistent items whose persistence is above a

predefined threshold, we traverse all buckets and report the IDs of

items 𝑒𝑖 whose corresponding counter 𝐵 [ℎ1 (𝑒𝑖 )] [𝑒𝑖 ] is larger than
the given threshold.

Periodical Emptying:At the end of each time window, the On-Off

sketch should set all state fields to On.
Analysis: Compared with the On-Off sketch for persistence esti-

mation, the On-Off sketch for finding persistent items only uses one

array of counters and uses an additional bucket for each counter.

By reducing the number of arrays, we can improve the throughput.

By using an additional bucket for each counter, we can separate

persistent items from non-persistent items and only record the IDs

of persistent items. If an item is persistent enough, it will not be the

smallest in the bucket, so it will be protected from replacements

and hash collisions.

3.4 Optimization
In this section, we optimize the On-Off sketch for finding persis-

tent items by exploiting SIMD (Single Instruction Multiple Data)

instructions [36]. SIMD instructions achieve data parallelism by

vectorization, which can effectively accelerate sequential access

operations [40]. Prior works on finding persistent items cannot take

advantage of SIMD instructions, because there are no sequential

access operations in their algorithms. For example, Small-Space

[32] and PIE [33] need several memory accesses for each insertion,

and for each memory access, they only read or write one item.

Then we show how SIMD instructions can accelerate the On-Off

sketch. As shown in Section 3.3, to insert an item 𝑒𝑖 , the On-Off

sketch first checks whether it is stored in 𝐵 [ℎ1 (𝑒𝑖 )]. Specifically, we
sequentially compare the ID of 𝑒𝑖 with IDs stored in 𝐵 [ℎ1 (𝑒𝑖 )]. With

SIMD instructions, our On-Off sketch can match IDs of items in

parallel. If 𝑒𝑖 is not stored in 𝐵 [ℎ1 (𝑒𝑖 )], the On-Off sketch has to find

the smallest counter and get its position. Such an operation cannot

directly take advantage of the acceleration of SIMD instructions.

To address this issue, we use an operation equivalent to finding the

smallest value to make our algorithm more SIMD-friendly. We can

find that, for an incoming item 𝑒𝑖 , if the replacement happens, the

state of 𝐶1 [ℎ1 (𝑒𝑖 )] is On and 𝐶1 [ℎ1 (𝑒𝑖 )] = 𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛
, which is

proved in Theorem 4.4. As a result, the On-Off sketch can decide

whether it should replace by checking if 𝐶1 [ℎ1 (𝑒𝑖 )]’s state is On
and if there is a counter equal to 𝐶1 [ℎ1 (𝑒𝑖 )] in bucket 𝐵 [ℎ1 (𝑒𝑖 )].
In our implementation, we sequentially compare 𝐶1 [ℎ1 (𝑒𝑖 )] with
counters stored in 𝐵 [ℎ1 (𝑒𝑖 )], which can also be accelerated by SIMD

instructions. Suppose the length of ID is 4 bytes, and each bucket

stores 8 items. The pseudo-code of the insertion implemented by

AVX2 SIMD instructions is provided in Algorithm 1.

From line 1 to line 3, the On-Off sketch searches whether 𝑒𝑖 has

been stored in buckets. The TZCNT [41] in line 5 is an instruction

that counts the number of trailing least significant zero bits. It can

return the position of the matching item according to the result.

If 𝑒𝑖 has been in the bucket, as shown in line 6, the On-Off sketch

inserts it into the corresponding counter. Otherwise, if𝐶1 [ℎ1 (𝑒𝑖 )]’s
state is On, as shown from line 9 to line 11, the On-Off sketch

searches whether there is a counter equal to 𝐶1 [ℎ1 (𝑒𝑖 )]. If there is,
as shown from line 13 to line 15, the On-Off sketch modifies the

corresponding KV pair in 𝐵 [ℎ1 (𝑒𝑖 )]. Otherwise, as shown in line

17, it modifies 𝐶1 [ℎ1 (𝑒𝑖 )].
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Figure 6: Insertion examples of finding persistent items.

Algorithm 1: Insertion implemented by SIMD instructions.

Input: An item 𝑒𝑖 , the array of IDs 𝑘𝑒𝑦𝑠 , the array of

counters 𝑣𝑎𝑙𝑢𝑒𝑠

1 __m256i item = _mm256_set1_epi32(𝑒𝑖 );

2 __m256i cmp = _mm256_cmpeq_epi32(item, 𝑘𝑒𝑦𝑠);

3 int match = _mm256_movemask_ps(cmp);

4 if 𝑚𝑎𝑡𝑐ℎ ≠ 0 then
5 𝑣𝑎𝑙𝑢𝑒𝑠[TZCNT(match)].Insert();

6 return;
7 if the state of 𝐶1 [ℎ1 (𝑒𝑖 )] is On then
8 item = _mm256_set1_epi32(𝐶1 [ℎ1 (𝑒𝑖 )]);
9 cmp = _mm256_cmpeq_epi32(item, 𝑣𝑎𝑙𝑢𝑒𝑠);

10 match = _mm256_movemask_ps(cmp);

11 if 𝑚𝑎𝑡𝑐ℎ ≠ 0 then
12 int pos = TZCNT(match);

13 𝑘𝑒𝑦𝑠[pos] = 𝑒𝑖 ;

14 𝑣𝑎𝑙𝑢𝑒𝑠[pos].Insert();

15 else
16 𝐶1 [ℎ1 (𝑒𝑖 )].Insert();
17 end
18 return;

3.5 Sliding Window
In many applications about data analysis, people are often more

concerned about recent items. To adapt our On-Off sketch to the

sliding window model, we can use the Sliding Sketch [42], a frame-

work that can be applied to most of the existing sketches. As shown

in the paper, Sliding Sketch [42] has been applied to the CM sketch

and HeavyKeeper [43] (an algorithm for finding heavy hitters) and

achieves good performance. We can also apply the Sliding Sketch

to the On-Off sketch due to the high similarity between our data

structure and that of the CM sketch and HeavyKeeper. The key idea

of Sliding Sketch is dividing the sketch into many “time zones” and

deleting out-dated information through scanning. The error bound

and one-sided error of our On-Off sketch still hold after using the

framework. Since there is a suitable framework available, we do

not design new methods for sliding windows.

4 MATHEMATICAL ANALYSIS
In this section, we provide a performance analysis for our On-Off

sketch on persistence estimation (Section 4.1) and finding persistent

items (Section 4.2).

4.1 Persistence Estimation
We first show the error bound of our On-Off sketch (Section 4.1.1).

Then we compare the On-Off sketch with prior works on frequency

estimation (Section 4.1.2). Let 𝑇 be the number of time windows

in the data stream, 𝑝𝑖 be the persistence of item 𝑒𝑖 , ∥𝑝 ∥1 =
∑𝑁
𝑖=1 𝑝𝑖 ,

and 𝑝𝑖 be the estimated persistence reported by our On-Off sketch.

4.1.1 Error Bound.

Theorem 4.1.

𝑝𝑖 ⩽ 𝑝𝑖 ⩽ 𝑇 (1)

Proof. According to the algorithm, every time 𝑒𝑖 arrives in time

window𝑊𝑐𝑢𝑟 , the mapped counter will be incremented by one in

𝑊𝑐𝑢𝑟 . Therefore, ∀𝑗,𝐶 𝑗 [ℎ 𝑗 (𝑒𝑖 )] ⩾ 𝑝𝑖 . Thus we have

𝑝𝑖 =𝑚𝑖𝑛
1⩽ 𝑗⩽𝑑 (𝐶 𝑗 [ℎ 𝑗 (𝑒𝑖 )]) ⩾ 𝑝𝑖

Further, 𝐶 𝑗 [ℎ 𝑗 (𝑒𝑖 )] will be incremented at most once in a time

window. Therefore, ∀𝑗,𝐶 𝑗 [ℎ 𝑗 (𝑒𝑖 )] ⩽ 𝑇 . Thus we have

𝑝𝑖 =𝑚𝑖𝑛
1⩽ 𝑗⩽𝑑 (𝐶 𝑗 [ℎ 𝑗 (𝑒𝑖 )]) ⩽ 𝑇 .

The estimated persistence 𝑝𝑖 of item 𝑒𝑖 has an upper bound 𝑇

and a lower bound 𝑝𝑖 . □

Theorem 4.2. Let 𝑙 = 𝑒/𝜖 and 𝑑 = ln(1/𝛿). We have

P
(
𝑝𝑖 ⩽ 𝑝𝑖 + 𝜖 ∥𝑝 ∥

1

)
⩾ 1 − 𝛿 (2)

Proof. Let Δ 𝑗𝑝𝑖 = 𝐶 𝑗 [ℎ 𝑗 (𝑒𝑖 )] − 𝑝𝑖 , 𝐸𝑡 be the set of all distinct

items appearing in time window 𝑡 , 𝑃𝑖 be the set of time windows

where item 𝑒𝑖 occurs, 𝑃𝑖 = {1, ...,𝑇 } − 𝑃𝑖 , and 𝐼𝑖, 𝑗,𝑡 be 1 if ∃𝑒𝑘 ∈
𝐸𝑡 , 𝑖 ≠ 𝑘 ∧ ℎ 𝑗 (𝑒𝑖 ) = ℎ 𝑗 (𝑒𝑘 ) and 0 otherwise. We have

E
[
Δ 𝑗𝑝𝑖

]
=

∑
𝑡 ∈𝑃𝑖

E
[
𝐼𝑖,𝑡

]
=

∑
𝑡 ∈𝑃𝑖

[
1 −

(
1 − 1

𝑙

) |𝐸𝑡 |]
Because each distinct item in a time window makes contribution

to its persistence, we have

∥𝑝 ∥
1
=

𝑁∑
𝑖=1

𝑝𝑖 =

𝑇∑
𝑡=1

|𝐸𝑡 | = ∥𝐸∥
1

Therefore, when 𝑙 = 𝑒/𝜖 , we have

E
[
Δ 𝑗𝑝𝑖

]
⩽

∑
𝑡 ∈𝑃𝑖 |𝐸𝑡 |

𝑙
⩽

∥𝑝 ∥
1

𝑙
=
𝜖 ∥𝑝 ∥

1

𝑒

By the Markov inequality,

P
(
𝑝𝑖 ⩽ 𝑝𝑖 + 𝜖 ∥𝑝 ∥

1

)
⩾ 1 − P

(
∀𝑗Δ 𝑗𝑝𝑖 > 𝑒E

[
Δ 𝑗𝑝𝑖

] )
⩾ 1 − 𝑒−𝑑

= 1 − 𝛿

Therefore, the On-Off sketch can address the persistence estima-

tion problemwith𝑂 ((1/𝜖) ln(1/𝛿)) space complexity and𝑂 (ln(1/𝛿))
time complexity. □



4.1.2 Comparison with Related Work.
As shown in Section 2, there is no solution that can be directly

used on persistence estimation. Therefore, we compare our On-Off

sketch with the strawman solution, i.e., a CM sketch with a Bloom

filter. According to Theorem 4.1, we can find that our On-Off sketch

has a much better upper bound than that of the strawman solution.

The upper bound of the estimated persistence in CM sketch is ∥𝑝 ∥
1
,

while it is 𝑇 in the On-Off sketch, which is much lower. Then we

show that, ignoring the error brought by the Bloom filter, the error

of our On-Off sketch is always smaller than that of the strawman

solution with same parameters.

Theorem 4.3. Let 𝑝𝑖𝐶𝑀 be the estimated persistence of the straw-
man solution. With same 𝑙 and 𝑑 and ignoring the error brought by
the Bloom filter,

𝑝𝑖 − 𝑝𝑖 ⩽ 𝑝𝑖
𝐶𝑀 − 𝑝𝑖 (3)

Proof. Let 𝑃𝑖, 𝑗,𝑘 be the set of time windows where item 𝑒𝑘
occurs if 𝑖 ≠ 𝑘 ∧ ℎ 𝑗 (𝑒𝑖 ) = ℎ 𝑗 (𝑒𝑘 ) and null set otherwise. For the

On-Off sketch, the error of estimated persistence can be only caused

by hash collisions that happen in time window where 𝑒𝑖 does not

occur. Therefore, Δ 𝑗𝑝𝑖 =

����⋃
𝑘

𝑃𝑖, 𝑗,𝑘 − 𝑃𝑖

����. For the strawman solution,

ignoring the error brought by the Bloom filter, Δ𝐶𝑀
𝑗

𝑝𝑖 =
∑
𝑘

��𝑃𝑖, 𝑗,𝑘 ��.
Because

����⋃
𝑘

𝑃𝑖, 𝑗,𝑘 − 𝑃𝑖

���� ⩽ ∑
𝑘

��𝑃𝑖, 𝑗,𝑘 ��, we have
𝑝𝑖 − 𝑝𝑖 =𝑚𝑖𝑛

1⩽ 𝑗⩽𝑑
(
Δ 𝑗𝑝𝑖

)
⩽ 𝑚𝑖𝑛

1⩽ 𝑗⩽𝑑

(
Δ𝐶𝑀𝑗 𝑝𝑖

)
= 𝑝𝑖

𝐶𝑀 − 𝑝𝑖

□

4.2 Finding Persistent Items
On finding persistent items, we let 𝑝𝑖 = 𝐵 [ℎ1 (𝑒𝑖 )] [𝑒𝑖 ] for item
𝑒𝑖 which is stored in buckets, and 𝑝𝑖 = 𝐶1 [ℎ(𝑒𝑖 )] for other items.

To prove the error bound of the On-Off sketch, we first show the

necessary and sufficient condition for replacements.

Theorem 4.4. When an item 𝑒𝑖 comes, the replacement happens
if and only if 𝑒𝑖 ∉ 𝐵 [ℎ1 (𝑒𝑖 )] ∧ the state of 𝐶1 [ℎ1 (𝑒𝑖 )] is On ∧
𝐶1 [ℎ1 (𝑒𝑖 )] = 𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛 .

Proof. As shown in the algorithm, a necessary condition for

the replacement is 𝑒𝑖 ∉ 𝐵 [ℎ1 (𝑒𝑖 )]. Because 𝐶1 [ℎ1 (𝑒𝑖 )] is incre-

mented at most one in a time window, 𝐶1 [ℎ1 (𝑒𝑖 )] must be equal

to 𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛
before 𝐶1 [ℎ1 (𝑒𝑖 )] > 𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛

. Only when

the state of 𝐶1 [ℎ1 (𝑒𝑖 )] is On, the On-Off sketch can increment

𝐶1 [ℎ1 (𝑒𝑖 )] by 1. In addition, the replacement must happen, if 𝑒𝑖 ∉

𝐵 [ℎ1 (𝑒𝑖 )] ∧ the state of𝐶1 [ℎ1 (𝑒𝑖 )] isOn∧𝐶1 [ℎ1 (𝑒𝑖 )] = 𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛
,

according to the algorithm. Therefore, it is the necessary and suffi-

cient condition for replacements. □

Then we show the error bound (Section 4.2.1) and recall rate

(Section 4.2.2) of our On-Off sketch. Finally we compare the On-Off

sketch with the state-of-the-art – PIE [33] (Section 4.2.3).

4.2.1 Error Bound.

Theorem 4.5.

𝑝𝑖 −𝐶1 [ℎ1 (𝑒𝑖 )] ⩽ 𝑝𝑖 ⩽ 𝑝𝑖 ⩽ 𝑇 (4)

Proof. According to Theorem 4.1, the counter is incremented

at most once in a time window, so 𝑝𝑖 ⩽ 𝑇 . In the initial state, the

equation is satisfied. Next, we need to prove that the equation is

satisfied at every insertion. When an item 𝑒𝑖 comes, there are 3

cases.

Case 1: 𝑒𝑖 is in 𝐵 [ℎ1 (𝑒𝑖 )]. This insertion does not affect other items.

For 𝑒𝑖 , if it has occurred in 𝑇𝑐𝑢𝑟 , 𝑝𝑖 and 𝑝𝑖 do not change, the equa-

tion still holds. Otherwise,

𝑝𝑖 + 1 −𝐶1 [ℎ1 (𝑒𝑖 )] ⩽ 𝑝𝑖 + 1 ⩽ 𝑝𝑖 + 1.

Case 2: 𝑒𝑖 is not in 𝐵 [ℎ1 (𝑒𝑖 )] and the replacement does not happen.

This insertion only affects the items 𝑒 𝑗 which are not in buckets and

ℎ1 (𝑒 𝑗 ) = ℎ1 (𝑒𝑖 ). If the state of 𝐶1 [ℎ1 (𝑒𝑖 )] is Off, 𝐶1 [ℎ1 (𝑒𝑖 )] does
not change, so the equation holds. Otherwise, for 𝑒𝑖 ,

0 ⩽ 𝑝𝑖 + 1 ⩽ 𝑝𝑖 + 1,

while for other affected items 𝑒 𝑗

0 ⩽ 𝑝𝑖 ⩽ 𝑝𝑖 + 1.

The equation still holds.

Case 3: 𝑒𝑖 is not in 𝐵 [ℎ1 (𝑒𝑖 )] and the replacement happens. Ac-

cording to Theorem 4.4,𝐶1 [ℎ1 (𝑒𝑖 )] = 𝐵 [ℎ1 (𝑒𝑖 )]𝑚𝑖𝑛
at that time, so

the estimated persistence of other items does not change. For 𝑒𝑖 ,

𝑝𝑖 + 1 −𝐶1 [ℎ1 (𝑒𝑖 )] ⩽ 𝑝𝑖 + 1 ⩽ 𝑝𝑖 + 1,

Finally, we can find that the equation holds for all cases. □

Theorem 4.6. Let 𝑙 = 2/𝜖 . We have

P

(
𝑝𝑖 ⩽ 𝑝𝑖 +

𝜖 ∥𝑝 ∥
1

𝑤 + 1

)
⩾

1

2

(5)

Proof. According to Theorem 4.5, the error of the estimated

persistence 𝑝𝑖 only comes from insertions to 𝐶1 [ℎ1 (𝑒𝑖 )] when 𝑒𝑖
is not stored in buckets. Replacements and insertions to buckets

do not bring any error. Let 𝑋𝑖 be the sum of the persistence of all

items 𝑒 𝑗 , whose ℎ1 (𝑒𝑖 ) = ℎ1 (𝑒 𝑗 ) and 𝑖 ≠ 𝑗 , i.e.,

𝑋𝑖 =
∑

ℎ1 (𝑒𝑖 )=ℎ1 (𝑒 𝑗 )∧𝑗≠𝑖
𝑝 𝑗

Because all counters in 𝐵 [ℎ1 (𝑒𝑖 )] are not smaller than𝐶1 [ℎ1 (𝑒𝑖 )],
we have

𝑝𝑖 − 𝑝𝑖 ⩽
𝑋𝑖

𝑤 + 1

Therefore,

P

(
𝑝𝑖 ⩽ 𝑝𝑖 +

𝜖 ∥𝑝 ∥
1

𝑤 + 1

)
⩾ P

(
𝑋𝑖

𝑤 + 1

⩽
2(∥𝑝 ∥

1
− 𝑝𝑖 )

(𝑤 + 1) · 𝑙

)
= 1 − P

(
𝑋𝑖

𝑤 + 1

> 2 · E
[

𝑋𝑖

𝑤 + 1

] )
⩾

1

2

□



4.2.2 Recall Rate.

Theorem 4.7. If 𝑝𝑖 > 𝐶1 [ℎ1 (𝑒𝑖 )], 𝑒𝑖 is guaranteed to be stored in
buckets.

Proof. According to Theorem 4.5, if 𝑝𝑖 is not stored in buckets,

0 ⩽ 𝑝𝑖 ⩽ 𝑝𝑖 = 𝐶1 [ℎ1 (𝑒𝑖 )]
Therefore, if 𝑝𝑖 > 𝐶1 [ℎ1 (𝑒𝑖 )], 𝑒𝑖 must be stored in buckets. □

Theorem 4.8. Let P𝑖 be the probability that 𝑒𝑖 is stored in buckets.

P𝑖 ⩾ 1 −
∥𝑝 ∥

1
− 𝑝𝑖

𝑤 · 𝑙 · 𝑝𝑖
. (6)

Proof. Because all counters in 𝐵 [ℎ1 (𝑒𝑖 )] are not smaller than

𝐶1 [ℎ1 (𝑒𝑖 )], we have

𝐶1 [ℎ1 (𝑒𝑖 )] ⩽
𝑋𝑖 + 𝑝𝑖

𝑤 + 1

Because 𝑝𝑖 > 𝐶1 [ℎ1 (𝑒𝑖 )] is a sufficient condition of that 𝑒𝑖 is

stored in buckets,

P𝑖 ⩾ P (𝑝𝑖 > 𝐶1 [ℎ1 (𝑒𝑖 )])
⩾ 1 − P (𝑋𝑖 + 𝑝𝑖 ⩾ (𝑤 + 1) · 𝑝𝑖 )

⩾ 1 − E [𝑋𝑖 ]
𝑤 · 𝑝𝑖

= 1 −
∥𝑝 ∥

1
− 𝑝𝑖

𝑤 · 𝑙 · 𝑝𝑖
□

4.2.3 Comparison with Related Work.
In this section, we compare our On-Off sketch with the state-of-

the-art – PIE [33]. Because PIE does not show how much space it

needs in its paper, we first calculate its space complexity. In each

time window, PIE builds a Space-Time Bloom Filter (STBF). Let 𝐸𝑡
be the set of all distinct items appearing in time window 𝑡 . The

space needed by STBF in time window 𝑡 is 𝑂 (𝐸𝑡 ). Therefore, the
space complexity of PIE is

𝑂

(
𝑇∑
𝑡=1

|𝐸𝑡 |
)
= 𝑂 (∥𝑝 ∥

1
)

According to Theorem 4.6 and Theorem 4.8, if 𝑙 = 2/𝜖 and𝑤 = 1,

P

(
𝑝𝑖 ⩽ 𝑝𝑖 +

𝜖 ∥𝑝 ∥
1

2

)
⩾

1

2

and for item 𝑒𝑖 whose persistence is larger than 𝜖 ∥𝑝 ∥
1
,

P𝑖 ⩾
1 + 𝜖

2

Therefore, the space complexity of our On-Off sketch is 𝑂 (1/𝜖),
which is much smaller than that of the PIE.

Parameter Estimation: We note that for all algorithms [32, 33]

on persistence, their error bounds or space complexities are related

to ∥𝑝 ∥
1
, so it is important to get the estimation of ∥𝑝 ∥

1
in the

data stream. Let ∥̃𝑝 ∥
1
be the estimation of ∥𝑝 ∥

1
. We provide three

methods to estimate ∥𝑝 ∥
1
. First, we can use the number of items

in the data stream to be ∥̃𝑝 ∥
1
. In this way, the error bound still

holds because ∥̃𝑝 ∥
1
⩾ ∥𝑝 ∥

1
. The estimation of the number of items

is also easy to get, but such approximation will make the error

bound loose. Second, we can get an approximate estimation of ∥𝑝 ∥
1

according to the number of distinct items in past time windows.

∥𝑝 ∥
1
=

∑𝑇
𝑡=1 |𝐸𝑡 |, where |𝐸𝑡 | is the number of distinct items in time

window 𝑡 . After getting the estimation of the number of distinct

items in a time window, we can multiply it by 𝑇 to be ∥̃𝑝 ∥
1
. Third,

if we can go through the data stream, we can use sketches on

cardinality estimation, such as FM sketch [19] and Hyperloglog

[17], to estimate the number of distinct items in each time window

with small memory. By summing up the result in each time window,

we can get ∥̃𝑝 ∥
1
. In this way, the error of ∥̃𝑝 ∥

1
is related to the sketch

we use. If we use the Hyperloglog with𝑚 estimator, the standard

error is around 1.04/
√
𝑚.

5 EXPERIMENTAL RESULTS
In this section, we provide experimental results of our On-Off sketch.

First, we describe the experimental setup (Section 5.1). Then we

show the performance of our On-Off sketch on persistence estima-

tion (Section 5.2) and finding persistent items (Section 5.3).

5.1 Experimental Setup
Datasets: For each dataset, we divide it into 1600 time windows,

i.e., 𝑇 = 1600.

1) Synthetic Datasets: We generate a synthetic dataset that fol-

lows the Zipf [44] distribution using Web Polygraph [45], an open-

source performance testing tool. The length of each item ID is 4

bytes, and the skewness is 1.5.

2) Data Center Dataset: The Data center dataset [46] contains

traces collected from the data centers studied in [47]. Each item (4

bytes) represents the ID of the trace.

3) Network Dataset: The network dataset contains users’ posting

history on the stack exchange website [48]. Each item (4 bytes)

represents the ID of each user.

4) IP Trace Dataset: The IP Trace Dataset contains streams of

anonymized IP traces collected in 2016 by CAIDA [49]. Each item

contains a source IP address (4 bytes) and a destination IP address

(4 bytes), 8 bytes in total.

Implementation: We have implemented our On-Off sketch in

C++. The hash functions are implemented using 32-bit Bob Hash

(obtained from the open-source website [50]) with different initial

seeds. All algorithms we implemented are single-thread.

Computation Platform: We conducted all experiments on a ma-

chine with one 6-core processors (6 threads, Intel(R) Core(TM)

i5-8400 CPU @ 2.80GHz) and 16 GB DRAM memory. Each proces-

sor has three levels of cache memory: one 32KB L1 data cache and

one 32KB L1 instruction cache for each core, one 256KB L2 cache

for each core, and one 9MB L3 cache shared by all cores.

Metrics:
1) Average Absolute Error (AAE): 1

|Ψ |
∑
𝑒𝑖 ∈Ψ |𝑝𝑖 − 𝑝𝑖 |, where 𝑝𝑖

is the real persistence of item 𝑒𝑖 , 𝑝𝑖 is its estimated persistence, and

Ψ is the query set. For persistence estimation, the query set is all

distinct items in the data stream. For finding persistent items, the

query set is the reported items whose persistence is higher than a

predefined threshold in the data stream.

2) False PositiveRate (FPR):Ratio of the number of non-persistent

items reported to the number of non-persistent items.

3) False Negative Rate (FNR): Ratio of the number of persistent

items that are not reported to the number of persistent items.
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Figure 7: AAE on persistence estimation.
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Figure 8: Throughput on persistence estimation.

4) F1 Score: Let 𝐶𝑅 be the recall rate, the ratio of the number of

persistent items that are reported to the number of persistent items,

and 𝑃𝑅 be the precision rate, the ratio of the number of persistent

items that are reported to the number of reported items. F1 Score

is (2 ·𝐶𝑅 · 𝑃𝑅)/(𝐶𝑅 + 𝑃𝑅).
5) Throughput: Million operations per second (Mops). All the

experiments about throughput are repeated 5 times, and the median

throughput is reported.

5.2 Persistence Estimation
5.2.1 Comparison with Related Work.

For persistence estimation, we compare our On-Off sketch with

the strawman solution, i.e., a CM sketch [9] with a Bloom filter [35],

which is proposed by PIE [33]. For the On-Off sketch, we set 𝑑 = 2.

For CM sketch, we also set 𝑑 = 2, while for the Bloom filter, we set

𝑧 = 4 to balance the accuracy and throughput. We fix the memory

size to make comparisons.

AAE (Figure 7(a)-7(d)):As proved in Theorem 4.3, the error of our

On-Off sketch is always smaller than that of the strawman solution.

Our results show that, if the real persistence is lower than 320, the

AAE of our On-Off sketch is around 1.31 times lower than that of

the strawman solution. If the real persistence is larger than 1280,

the AAE of our On-Off sketch is around 19.3 times lower than that

of the strawman solution.

Throughput (Figure 8): Our results show that, on average, the

throughput of our On-Off sketch is around 2.20 times higher than

that of the strawman solution. It is because that the strawman

solution has to access memory more times.

5.2.2 Parameter Setting.
According to Section 3.2, we have two parameters in persistence

estimation: 𝑙 and 𝑑 . To evaluate the influence of parameter setting,

we fix the memory usage of the On-Off sketch and vary 𝑑 .
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Figure 9: AAE of the On-Off sketch.
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Figure 10: CDF of the error on persistence estimation.
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Figure 11: Throughput of the On-Off sketch.

AAE (Figure 9(a)-9(b)): In the synthetic dataset, when thememory

is 5MB, the optimal 𝑑 is 2, whose AAE is around 8%, 31%, and 62%

lower than that of the 𝑑 = 3, 𝑑 = 4, and 𝑑 = 5, respectively. When
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Figure 12: AAE on finding persistent items.
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Figure 13: FNR on finding persistent items.

the memory is 25MB, the optimal 𝑑 is 5, whose AAE is around

187%, 48%, and 11% lower than that of the 𝑑 = 2, 𝑑 = 3, and 𝑑 = 4,

respectively. In the network dataset, when the memory is 5MB, the

optimal 𝑑 is 3, whose AAE is around 7%, 24%, and 38% lower than

that of the 𝑑 = 2, 𝑑 = 4, and 𝑑 = 5, respectively. When the memory

is 25MB, the optimal 𝑑 is 5, whose AAE is around 415%, 97%, and

27% lower than that of the 𝑑 = 2, 𝑑 = 3, and 𝑑 = 4, respectively.

CDF of the error (Figure 10): We use the synthetic dataset, set

the memory to 5MB, and repeat experiments 10 times to show the

CDF of error for each item. We can find that, with a lower 𝑑 , there

is a higher probability that the errors of items are low. For example,

for 𝑑 = 2, the probability that the error is less than 2 is about 46.1%,

while for 𝑑 = 5, the probability is about 16.1%. In addition, with a

lower 𝑑 , the error of the worst case is also higher. The probability

that the error is higher than 50 for 𝑑 = 2 is 0.41%, while for 𝑑 = 5,

the probability is about 0.03%.

Throughput (Figure 11(a)-11(b)): Our results show that, the in-

sertion throughput when the memory is 5MB is about 26% higher

than the insertion throughput when the memory is 25MB. In ad-

dition, the insertion throughput of 𝑑 = 2 is around 44%, 88%, and

132% higher than that of the 𝑑 = 3, 𝑑 = 4, and 𝑑 = 5, respectively.

Analysis: 1) For AAE, the optimal 𝑑 increases as the memory in-

creases. With larger 𝑑 , the AAE may be larger when the memory is

small, but the AAE also drops faster as the memory increases. 2)

The insertion throughput decreases as the memory or 𝑑 increases,

and 𝑑 has a greater impact on the throughput because larger 𝑑

indicates more memory accesses.

5.3 Finding Persistent items
5.3.1 Comparison with Related Work.

For finding persistent items, we first compare our On-Off sketch

with 2 other algorithms: PIE [33] and Small-Space (SS) [32], which

can work without any assumptions on the sizes of time windows.

For the On-Off sketch, we set𝑤 = 8, which means there are 8 KV

pairs in each bucket. We use AVX2 SIMD instructions to implement

our On-Off sketch. For other sketches, parameters are set according

to their authors’ recommendations. In experiments, the memory

size ranges from 300KB to 500KB to expose differences among

algorithms. Because PIE cannot work with small memory, it will

use 50 times more memory as SS and On-Off sketch.

AAE (Figure 12(a)-12(d)): Our results show that, the AAE of our

On-Off sketch is 70048 times and 29342 times lower than that of SS

and PIE. There is no data of PIE in Figure 12(b), because PIE cannot

work in the data center dataset, i.e., it cannot report any items.

FNR (Figure 13(a)-13(d)): Our results show that, the FNR of our

On-Off sketch is often 0, while the FNR of other algorithms is often

larger than 0.5.

FPR (Figure 14(a)-14(d)): In Figure 14(a), there is no data of our

On-Off sketch because the FPR is 0 in the synthetic dataset. In

Figure 14(b), there is no data of PIE, because PIE cannot work in

the data center dataset. In the network dataset and IP trace dataset,

the FPR of our On-Off sketch is around 44.1 times and 1.42 times

lower than that of SS and PIE.

Throughput (Figure 15(a)-15(b)):Our results show that, for 300KB

memory, the insertion throughput of our On-Off sketch is around

2.68 times and 1.25 times higher than that of SS and PIE. For 500KB
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Figure 14: FPR on finding persistent items.
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Figure 15: Throughput on finding persistent items.

memory, the insertion throughput of our On-Off sketch is around

2.84 times and 1.26 times higher than that of SS and PIE.

Analysis: Before showing the efficiency of our On-Off sketch, we

first analyze the shortcomings of prior algorithms.

1) For SS, the root cause of its inaccuracy is its space-inefficiency.

First, there are many pointers in its data structure, which is space-

consuming. Second, it has to keep all items sampled, so there are

many non-persistent items stored, which also take up much space.

To keep a small memory, the sample rate of SS has to be lower,

which increases its error. We can find that FPR of SS decreases with

memory increases. It is because that if the sample rate is too low,

more space only leads to more non-persistent items mistakenly

recognized as persistent items. The throughput of the SS is the

lowest because hash collisions in the hash table will increase the

number of memory accesses.

2) For PIE, although it uses 50 times memory as the On-Off

sketch, its accuracy is still low. As shown in Section 4.2.3, PIE’s

space complexity is 𝑂 (∥𝑝 ∥
1
), which is much larger than that of

our On-Off sketch, because it has to record much information of

non-persistent items. There will be many hash collisions in PIE with

small memory. Because PIE will ignore all cells where collisions

happen, it tends to underestimate the persistence when its memory

is small. Therefore, in the network and IP trace dataset, the FPR of

PIE is comparable to our On-Off sketch, while its FNR is much larger

than our On-Off sketch. As shown in Figure 14(a) and Figure 14(d),

the FPR of PIE may increase with memory increasing. It is because

its degree of underestimation decreases when it has more memory.

Though PIE’s data structure is more memory-efficient, it has to

encode every ID of incoming items, which lowers its throughput.

3) Compared with SS and PIE, our On-Off sketch is much more

space-efficiency. Our data structure neither applies pointers nor has

many empty cells. In addition, non-persistent items will be replaced

quickly and will not take up much space. Therefore, the accuracy

of our On-Off sketch is much better. We can find that the FNR of

our On-Off sketch is often 0. It is because our On-Off sketch will

only overestimate the persistence. Due to fewer memory accesses

and the acceleration of SIMD instruction, the throughput of our

On-Off sketch is the best.

5.3.2 Parameter Setting.
As shown in Section 3.3, we have two parameters in finding

persistent items: 𝑙 and 𝑤 . To evaluate the influence of parameter

setting, we fix the memory usage of the On-Off sketch and vary the

value of𝑤 . In experiments, the memory size ranges from 200KB to

280KB.
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Figure 16: AAE of the On-Off sketch.

AAE (Figure 16(a)-16(b)): Our results show that, in the synthetic

dataset, the AAE of 𝑤 = 32 is around 74.4 times and 2.56 times

lower than that of𝑤 = 2 and𝑤 = 8. However, in the IP trace dataset,

the gap among AAEs under different parameters is smaller.

FNR (Figure 17(a)-17(b)): Our results show that, in the synthetic

dataset, the FNR of 𝑤 = 32 and 𝑤 = 8 is often 0. In the IP trace

dataset, when the memory is only 200KB, the FNR of 𝑤 = 32 is

around 11.9 times and 4.1 times lower than that of𝑤 = 2 and𝑤 = 8.

FPR (Figure 18(a)-18(b)): Our results show that, in the synthetic

dataset, when the memory is only 200KB, the FPR of 𝑤 = 32 is

around 140 times and 44 times lower than that of𝑤 = 2 and𝑤 = 8.

In the IP trace dataset, when the memory is only 200KB, the FPR

of𝑤 = 32 is around 3.3 times and 1.4 times higher than𝑤 = 2 and
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Figure 17: FNR of the On-Off sketch.
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Figure 18: FPR of the On-Off sketch.

𝑤 = 8, while the memory is 280KB, the FPR of𝑤 = 32 is around 2.7

times and 2.6 times lower than𝑤 = 2 and𝑤 = 8.

Throughput (Figure 19): In this figure, “SIMD-8” means that we

implement our On-Off sketch with AVX2 SIMD instructions and

𝑤 = 8, while “w=8” means we set𝑤 to be 8 but the On-Off sketch

does not use SIMD instructions. Our results show that the insertion

throughput of 𝑤 = 2 is around 13% and 40% higher than that of

𝑤 = 8 and 𝑤 = 32. In the IP trace dataset, the effect of SIMD

instructions is relatively small. In the other three datasets, using

SIMD instructions can increase the insertion throughput by 10%.

Analysis: 1) With enough memory, when 𝑤 increases, the AAE

and FNR often decrease. However, we can find that the FPR of

𝑤 = 32 is the worst in the IP trace dataset when the memory

is 200KB. The reason is that 200KB is too small for our On-Off

sketch to find persistent items in the IP trace dataset. Because the

length of ID is 8 byte in the IP trace dataset, the number of items

we can store is less with the same space. As a result, the degree

of overestimation is too high in 200KB, and many non-persistent

items will be mistakenly recognized as persistent. With smaller𝑤 ,

the 𝑙 increases, and the randomness of also increases. When the

memory is too small, such randomness can reduce FPR because

there are often some buckets whose degree of overestimation is

small, so the AAE and FNR decrease.When there is enoughmemory,

randomness increases FPR because there are more buckets whose

degree of overestimation is too high, so the AAE and FNR increase.

2) The insertion throughput decreases as𝑤 increases. Because

the number of memory accesses is small, the insertion throughput

is still high when𝑤 = 32. In the IP trace dataset, the length of ID is
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Figure 19: Throughput of the On-Off sketch.

8 bytes, so we can only search 4 items at a time with AVX2 SIMD

instructions. Therefore, SIMD does not perform well under the IP

trace dataset. In the other three datasets, the length of ID is 4 bytes,

so that we can search 8 items at a time, and we can find that SIMD

instructions can obviously improve the throughput.

3) When there is enough space, choosing an appropriate𝑤 is a

trade-off between accuracy and throughput. The larger 𝑤 is, the

higher the accuracy is, while the lower the throughput is. If the

application demands high throughput, we should decrease the𝑤

(e.g.,𝑤 = 2). If the application demands high accuracy, we should

increase 𝑤 (e.g., 𝑤 = 32). Because the memory is often fixed, we

can set 𝑙 according to 𝑑 and memory size.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose the On-Off sketch, which can address two

typical problems about persistence – persistence estimation and

finding persistent items. We derive the error bound of our On-Off

sketch and prove that it does not underestimate persistence. In

addition, we conduct extensive experiments on three real world

datasets and a synthetic dataset. For persistence estimation, we

theoretically prove that our On-Off sketch’s error is always smaller

than that of the CM sketch. In experiments, the On-Off sketch

can achieve around 6.17 times smaller error and 2.2 times higher

throughput. For finding persistent items, the space complexity of

our On-Off sketch is much better than the state-of-the-art (PIE),

and it can reduce the error up to 4 orders of magnitude and achieves

2.84 times higher throughput than prior algorithms in experiments.

We thank the anonymous reviewers for their valuable sugges-

tions. In the future, we hope to further explore how to enable

persistence queries at different sizes of time windows efficiently.

We should note that it is still an open problem and the prior algo-

rithm [25] which supports it just simply holds one data structure

for each size of the time window.
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